Appendix 9.4 - Model Verification

Due to the size of the study area, a number of model verification studies will be undertaken. For this PEIR, a model verification study for the borough of South Northamptonshire only has been undertaken.

South Northamptonshire

The approach to model verification that LAQM.TG16 recommends for local authorities when they carry out their LAQM duties is summarised in the Uncertainty section of Chapter 9. For the verification and adjustment of NO_x/NO_2 concentrations, the guidance recommends that the comparison considers a broad spread of automatic and diffusion monitoring. SNC monitors roadside NO_2 concentrations passively using diffusion tubes at a number of locations. To ensure that the model verification is representative of the local area, two model verification studies have been undertaken for receptors in South Northamptonshire. One verification study compares modelled concentrations with monitored concentrations close to the M1. The other verification study compares modelled and monitored concentrations at locations away from the influence of the M1.

Verification for Receptors close to Motorway

The most recent concentrations monitored are provided in Table 9.3.1.

	Monitoring Site	Measured Annual-mean NO ₂ Concentrations (µg.m ⁻³)	
		2015	
	1 – Crematorium	40	
Site Specific Monitoring	2 – Depot	19	
	3 – Collingtree Road	20	
	4 – Collingtree Court	38	
SNC Monitoring	K1	26.4	
	K2	26.9	
	К3	35.0	
	H1	21.3	

Table 9.3.1 Measured Annual-mean NO₂ Concentrations (µg.m⁻³)

The monitored annual-mean NO_x road contributions have been derived from the monitored annualmean NO_2 concentrations using the LAQM.TG16 calculator. The monitored annual-mean NO_x road contributions have then been compared with the modelled annual-mean NO_x road contributions. This comparison is provided in Table 9.3.2 below.

Table 9.3.2 Comparison of Monitored and Modelled Annual-mean Road NO_X Contribution (μ g.m⁻³)

Monitoring Oite	Annual-mean Road NO_x Contribution (µg.m ⁻³)	
Monitoring Site	Modelled	Monitored

1 – Crematorium	22.0	39.9
2 – Depot	14.8	19.3
3 – Collingtree Road	25.6	19.6
4 – Collingtree Court	13.4	38.0
K1	18.7	26.4
K2	21.4	26.9
К3	25.0	35.0
H1	15.7	21.3

It should be borne in mind that the monitored concentrations are themselves only estimates to the true concentrations at each point; the EU Directive on air quality designates passive NO₂ samplers indicative measures with a potential uncertainty of +/-30 %. Table A1.2 above indicates that the model is under-predicting at seven of the eight monitoring locations.

The modelled annual-mean NOx road contributions for the concentrations have been plotted against the monitored annual-mean NOx road contributions in Graph 1.

The modelled NO_x contributions have been multiplied by the gradient of the trend line (1.7205) to determine the corrected NO_x contributions. Modelled annual-mean NO_2 concentrations have been

derived from the corrected modelled annual-mean NO_x road contributions. The modelled annualmean NO_2 concentrations have been plotted against the monitored annual-mean NO_2 concentrations in Graph 2.

The corrected modelled annual-mean NO_2 concentrations are almost all within 25% or greater than the monitored annual-mean NO_2 concentrations.

The fractional bias can also be used to determine whether the corrected model has a tendency to over or under-predict. The fractional bias is calculated as:

(Average Monitored NO_x Concentration – Average Predicted NOx Concentration) / $0.5 \times$ (Average Monitored NO_x + Average Predicted NOx Concentration)

Fractional bias values vary between +2 and -2 and has an ideal value of zero. A negative value suggests a model over-prediction and a positive value suggests a model under-prediction.

Table 9.3.3 sets out the average monitored concentration and the average predicted concentration.

Table 9.3.3 Comparison of Monitored and Modelled Annual-me	ean Road NO _x Contribution
(µg.m ⁻³)	

Monitoring Site	Annual-mean Road NO _x Contribution (µg.m ⁻³)	
	Modelled	Monitored
1 – Crematorium	31.6	58.4
2 – Depot	8.2	13.5

3 – Collingtree Road	43.8	14.0
4 – Collingtree Court	3.6	53.8
K1	20.5	27.9
K2	29.6	29.0
КЗ	41.9	46.9
H1	10.9	17.5
Average	23.8	32.6

The fractional bias for this study is therefore $(23.8 - 32.6) / (0.5 \times (23.8 + 32.6)) = 0.31$. As the fractional bias is close to zero, the adjusted model is neither systematically over-predicting or systematically under-predicting.

Verification for Receptors away from Motorway

The most recent concentrations monitored are provided in Table 9.3.4.

Table 9.3.4 Measured	l Annual-mean NO ₂	Concentrations	$(\mu g.m^{-3})$	
----------------------	-------------------------------	----------------	------------------	--

Monitoring Site		Measured Annual-mean NO ₂ Concentrations (µg.m ⁻³)	
	ř	2015	
	5 – Marina	23.4	
	6 – Fairfield Road/Station Road	21.2	
Site Specific Monitoring	10 – St Johns Road	20.0	
	11 – Blisworth Village	30.4	
	12 – Milton Malsor Village	27.0	
	TC1 2 3	33.4 (average of triplicate tubes)	
SNC Monitoring	TK1	47.2	
	TK2	39.5*	
	ТКЗ	29.6	
	TK4	39.9	
	TK5	23.7	
	TK6	26.6	
	ТК7	22.1	
	ТК8	28.7	
	ТК9	31.8	
	TK43	28.6	

T1	26.5*
T2	24.7
TN1	28.5
TN2	41.9
OS1	19.4
OS2	24.5
GPKa	23.8
RO1	28.2
RO2	31.1
RO3	26.6
RO4	16.4
RO6	31.3
BR2	24.4
BR4	24.3
S1	15.3

*Results for 2014 as no available data for 2015

The monitored annual-mean NO_x road contributions have been derived from the monitored annualmean NO₂ concentrations using the LAQM.TG16 calculator. The monitored annual-mean NO_x road contributions have then been compared with the modelled annual-mean NO_x road contributions. This comparison is provided in Table 9.3.5 below.

Table 9.3.5 Comparison of Monitored and Modelled Annual-mean Road NO_X Contributio	n
(µg.m ⁻³)	

Marila da Olta	Annual-mean Road NO _x Contribution (µg.m ⁻³)		
Monitoring Site	Modelled	Monitored	
5 – Marina	7.8	21.7	
6 – Fairfield Road/Station Road	5.6	17.4	
10 – St Johns Road	5.4	14.9	
11 – Blisworth Village	4.6	36.6	
12 – Milton Malsor Village	9.1	29.2	
TC1 2 3	3.3	43.3	
TK1	12.0	76.8	
TK2	5.4	57.5	
ТКЗ	12.3	34.8	
TK4	6.3	58.4	

TK5	11.4	22.3
TK6	10.1	28.4
TK7	5.5	19.1
TK8	5.2	32.8
TK9	6.0	39.6
TK43	10.0	32.6
T1	3.0	28.2
T2	9.5	24.4
TN1	7.1	32.4
TN2	7.9	63.3
OS1	2.6	13.7
OS2	5.1	24.0
GPKa	3.2	22.6
RO1	4.4	31.8
RO2	15.4	38.1
RO3	6.3	28.4
RO4	2.0	7.9
RO6	7.4	38.5
BR2	3.8	23.8
BR4	6.8	23.6
S1	1.8	5.8

It should be borne in mind that the monitored concentrations are themselves only estimates to the true concentrations at each point; the EU Directive on air quality designates passive NO_2 samplers indicative measures with a potential uncertainty of +/-30 %.

The modelled annual-mean NOx road contributions for the concentrations have been plotted against the monitored annual-mean NOx road contributions in Graph 1.

The modelled NO_x contributions have been multiplied by the gradient of the trend line (4.1593) to determine the corrected NO_x contributions. Modelled annual-mean NO_2 concentrations have been derived from the corrected modelled annual-mean NO_x road contributions. The modelled annual-mean NO_2 concentrations have been plotted against the monitored annual-mean NO_2 concentrations in Graph 2.

The majority of the corrected modelled annual-mean NO₂ concentrations are within 25% or are greater than the monitored annual-mean NO₂ concentrations. The correction factor therefore improves the modelled concentrations and has been applied to all predictions (away from the motorways) used within the assessment.

The fractional bias can also be used to determine whether the corrected model has a tendency to over or under-predict. The fractional bias is calculated as:

(Average Monitored NO_x Concentration – Average Predicted NOx Concentration) / $0.5 \times$ (Average Monitored NO_x + Average Predicted NOx Concentration)

Fractional bias values vary between +2 and -2 and has an ideal value of zero. A negative value suggests a model over-prediction and a positive value suggests a model under-prediction.

Table 9.3.3 sets out the average monitored concentration and the average predicted concentration.

Table 9.3.3 Comparison of Monitored and Modelled Annual-mean Road NO_X Contribution	n
(µg.m ⁻³)	

Monitoring Site	Annual-mean Road NO _x Contribution (µg.m ⁻³)	
	Modelled	Monitored
5	32.5	21.7
6	23.3	17.4
10	22.5	14.9

11	19.2	36.6
12	37.8	29.2
TC1 2 3	13.9	43.3
TK1	49.9	76.8
TK2	22.3	57.5
ТКЗ	51.3	34.8
TK4	26.2	58.4
TK5	47.4	22.3
TK6	42.1	28.4
TK7	22.7	19.1
TK8	21.6	32.8
TK9	25.1	39.6
TK43	41.7	32.6
T1	12.6	28.2
T2	39.4	24.4
TN1	29.4	32.4
TN2	32.8	63.3
OS1	11.0	13.7
OS2	21.3	24.0
GPKa	13.4	22.6
RO1	18.3	31.8
RO2	64.2	38.1
RO3	26.3	28.4
RO4	8.5	7.9
RO6	30.6	38.5
BR2	15.9	23.8
BR4	28.3	23.6
S1	7.5	5.8
Average	27.7	31.3

The fractional bias for this study is therefore $(31.3 - 27.7) / (0.5 \times (27.7 + 31.3)) = 0.12$. As the fractional bias is close to zero, the adjusted model is neither systematically over-predicting nor systematically under-predicting.